Finding persistent items in data streams

Author:

Dai Haipeng1,Shahzad Muhammad2,Liu Alex X.1,Zhong Yuankun1

Affiliation:

1. Nanjing University, Nanjing, Jiangsu, CHINA

2. North Carolina State University

Abstract

Frequent item mining, which deals with finding items that occur frequently in a given data stream over a period of time, is one of the heavily studied problems in data stream mining. A generalized version of frequent item mining is the persistent item mining, where a persistent item, unlike a frequent item, does not necessarily occur more frequently compared to other items over a short period of time, rather persists and occurs more frequently over a long period of time. To the best of our knowledge, there is no prior work on mining persistent items in a data stream. In this paper, we address the fundamental problem of finding persistent items in a given data stream during a given period of time at any given observation point. We propose a novel scheme, PIE, that can accurately identify each persistent item with a probability greater than any desired false negative rate (FNR) while using a very small amount of memory. The key idea of PIE is that it uses Raptor codes to encode the ID of each item that appears at the observation point during a measurement period and stores only a few bits of the encoded ID in the memory of that observation point during that measurement period. The item that is persistent occurs in enough measurement periods that enough encoded bits for the ID can be retrieved from the observation point to decode them correctly and get the ID of the persistent item. We implemented and extensively evaluated PIE using three real network traffic traces and compared its performance with two prior adapted schemes. Our results show that not only PIE achieves the desired FNR in every scenario, its FNR, on average, is 19.5 times smaller than the FNR of the best adapted prior art.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3