XGNN: Boosting Multi-GPU GNN Training via Global GNN Memory Store

Author:

Tang Dahai1,Wang Jiali2,Chen Rong2,Wang Lei3,Yu Wenyuan3,Zhou Jingren3,Li Kenli1

Affiliation:

1. Hunan University

2. Shanghai Jiao Tong University

3. Alibaba Group

Abstract

GPUs are commonly utilized to accelerate GNN training, particularly on a multi-GPU server with high-speed interconnects (e.g., NVLink and NVSwitch). However, the rapidly increasing scale of graphs poses a challenge to applying GNN to real-world applications, due to limited GPU memory. This paper presents XGNN, a multi-GPU GNN training system that fully utilizes system memory (e.g., GPU and host memory), as well as high-speed interconnects. The core design of XGNN is the Global GNN Memory Store (GGMS), which abstracts underlying resources to provide a unified memory store for GNN training. It partitions hybrid input data, including graph topological and feature data, across both GPU and host memory. GGMS also provides easy-to-use APIs for GNN applications to access data transparently, forwarding data access requests to the actual physical data partitions automatically. Evaluation on various multi-GPU platforms using three common GNN models with four large-scale datasets shows that XGNN outperforms DGL, Quiver and DGL+C by up to 7.9X (from 2.3X), 15.7X (from 3.3X) and 2.8X (from 1.3X), respectively.

Publisher

Association for Computing Machinery (ACM)

Reference57 articles.

1. 2020. DGL: Deep Graph Library. https://www.dgl.ai/.

2. 2020. Euler 2.0: A Distributed Graph Deep Learning Framework. https://github.com/alibaba/euler.

3. 2021. Open Graph Benchmark: The ogbn-papers100M dataset. https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M.

4. 2023. AMD Instinct MI250X Accelerator. https://www.amd.com/en/products/server-accelerators/instinct-mi250x.

5. 2023. Compute Express Link. https://www.computeexpresslink.org/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synergies Between Graph Data Management and Machine Learning in Graph Data Pipeline;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3