Opportunities for optimism in contended main-memory multicore transactions

Author:

Huang Yihe1,Qian William1,Kohler Eddie1,Liskov Barbara2,Shrira Liuba3

Affiliation:

1. Harvard University

2. MIT

3. Brandeis University

Abstract

Optimistic concurrency control, or OCC, can achieve excellent performance on uncontended workloads for main-memory transactional databases. Contention causes OCC's performance to degrade, however, and recent concurrency control designs, such as hybrid OCC/locking systems and variations on multiversion concurrency control (MVCC), have claimed to outperform the best OCC systems. We evaluate several concurrency control designs under varying contention and varying workloads, including TPCC, and find that implementation choices unrelated to concurrency control may explain much of OCC's previously-reported degradation. When these implementation choices are made sensibly, OCC performance does not collapse on high-contention TPC-C. We also present two optimization techniques, commit-time updates and timestamp splitting , that can dramatically improve the high-contention performance of both OCC and MVCC. Though these techniques are known, we apply them in a new context and highlight their potency: when combined, they lead to performance gains of 3.4X for MVCC and 3.6X for OCC in a TPC-C workload.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Abort-Freedom for Deterministic Transactions;2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2024-05-27

2. Ad Hoc Transactions through the Looking Glass: An Empirical Study of Application-Level Transactions in Web Applications;ACM Transactions on Database Systems;2023-12-23

3. RCBench: an RDMA-enabled transaction framework for analyzing concurrency control algorithms;The VLDB Journal;2023-12-14

4. Fairly Decentralizing a Hybrid Concurrency Control Protocol for Real-time Database Systems;2023 Eleventh International Symposium on Computing and Networking Workshops (CANDARW);2023-11-27

5. When Concurrency Matters: Behaviour-Oriented Concurrency;Proceedings of the ACM on Programming Languages;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3