Affiliation:
1. M.K. Ammosov North-Eastern Federal University
Abstract
One of the modern and relevant methods for investigating the structures of objects is based on the holographic method of recording signals (holographic microscopy). The main advantage of this method is the ability to obtain complete information about the object. In other words, this method makes it possible to record not only the amplitude, but also the phase of the wave. This is achieved thanks to a recording scheme in which the phase of the wave is some modulation of the intensity. This advantage makes holographic microscopy an effective tool for the investigate of particles/microparticles in gases, liquids and solid materials in the form of thin films or in sufficiently transparent materials for optical waves (one of the main limitations of the holographic recording scheme is to investigate only objects with high transmissivity, i.e. the reference wave is must be about 70% or more of the total wave). Within the framework of this work, we consider the scheme of in-line holography (Gabor holography). The undoubted advantage of the in-line holographic investigation method is that it is limited only by the wavelength range. In other words, by changing the wavelength of the source, a wide range of objects can be examined. For example, in-line holography is used in low energy electron microscopes, which allows the atomic structure of an object to be studied. In the case when the source is a laser (optical range), a holographic microscope provides a wide range of possibilities for investigation the micro-objects, from various bacteria to various fine–structured particles. We developed a model of a digital holographic microscope for the study of structures in the optical range, based on the Gabor in-line holography method. This model of the microscope is developed on the Raspberry Pi Zero 2W platform.
Publisher
North-Eastern Federal University