Totally Volume Integral of Fluxes for Discontinuous Galerkin Method (TVI-DG) I-Unsteady Scalar One Dimensional Conservation Laws

Author:

Rustum Ibrahim. M.,Elhadi ElHadi. I.

Abstract

The volume integral of Riemann flux in the discontinuous Galerkin (DG) method is introduced in this paper. The boundaries integrals of the fluxes (Riemann flux) are transformed into volume integral. The new family of DG method is accomplished by applying divergence theorem to the boundaries integrals of the flux. Therefore, the (DG) method is independent of the boundaries integrals of fluxes (Riemann flux) at the cell (element) boundaries as in classical (DG) methods. The modified streamline upwind Petrov-Galerkin method is used to capture the oscillation of unphysical flow for shocked flow problems. The numerical results of applying totally volume integral discontinuous Galerkin method (TVI-DG) are presented to unsteady scalar hyperbolic equations (linear convection equation, inviscid Burger's equation and Buckley-Leverett equation) for one dimensional case. The numerical finding of this scheme is very accurate as compared with other high order schemes as the weighted compact finite difference method WCOMP.

Publisher

Omar Al-Mukhtar University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3