Analysis of Properties of Polymer Composites with Various Types of Fillers

Author:

Yerofeyev V. T.12,Afonin V. V.3,Zotkina M. M.3,Stenechkin K. S.1,Tyuryakhina T. P.2,Lazarev A. V.2

Affiliation:

1. National Research Moscow State University of Civil Engineering

2. Scientific-Research Institute of Building Physics of RAACS

3. National Research Mordovia State University

Abstract

The processes of structure formation of composite building materials (KSM) on different polymer binders are presented. It is shown that one of the most significant components of KSM are fillers, which help to improve their structural and operational characteristics. This work is devoted to the analysis of the results of an experimental study of the properties of epoxy composites with fillers having various elastic-plastic and strength properties. The research was carried out in three stages: at the first stage, studies were conducted aimed at assessing the influence of the nature of the filler on the curing processes of KSM; at the second, the influence of the type of filler and its quantitative content on the strength of composites was established, at the third, compositions were optimized using fillers with different indicators of grain composition and elastic-plastic properties. Powders of glass, dolomite, thermolite, and diatomite were considered as fillers at the first and second stages of the research, and powders of glass, ceramics, and chalk were considered at the second stage. The research at the third stage was carried out using mathematical methods of experiment planning with the construction of a planning matrix for a complete factor experiment and the determination of the values of the response functions relative to the encoded factors. The physico-mechanical properties, degree of curing, and chemical resistance of filled epoxy CCM have been established. On the basis of artificial neural networks, the maximum properties of the studied composites with fillers were determined. An assessment of structural properties based on rank correlation is also proposed. The results of the research can be used to predict the properties of KSM, as well as to clarify the extreme parameters of the properties. The dependences of changes in the properties of polymer composites on the surface characteristics, the dispersion of fillers and the degree of filling were established; preferred fillers for epoxy composites were determined; fillers were determined to assess the effect of elastic surface properties of composites, allowing to improve the strength and deformability of polymer composites; regression models were obtained based on a complete factorial experiment; an assessment of the «structural stability» of the studied composites using Pearson, Kendall, Spearman rank correlation; On the basis of artificial neural networks, the extreme properties of the studied composites with fillers were determined, neural networks.

Publisher

Stroymaterialy

Reference35 articles.

1. Karpenko N.I., Karpenko S.N., Yarmakovsky V.N., Erofeev V.T. On modern methods of ensuring the durability of reinforced concrete structures. ACADEMIA. Arhitektura i stroitel’stvo. 2015. No. 1, pp. 93–102. (In Russian).

2. Bobryshev A.N., Erofeev V.T., Kozomazov V.N. Polimernye kompozicionnye materialy [Polymer composite materials: textbook]. Moscow: ASV, 2013. 480 p.

3. Sokolova Yu.A. Epoksidnyye polimerbetony, modifitsirovannyye neftyanymi bitumami, kamennougol’noy i karbamidnoy smolami i aminoproizvodnymi soyedineniyami / pod. red. Yu.A. Sokolovoi, V.T. Yerofeyeva [Epoxy polymer concretes modified with petroleum bitumen, coal and urea resins and amino derivatives / under. ed. by V.T. Erofeev]. Moscow: Paleotype, 2008. 244 p. смолами и аминопроизводными соединениями / Под ред. Ю.А. Соко- ловой, В.Т. Ерофеева. М.: Палеотип, 2008. 244 с.

4. Erofeev V., Tyuryakhin A., Tyuryakhina T. Flat space of values of volume module of grain composite with spherical fill-lem. International Journal of Civial Engineering and Technology (IJCIET). 2019. Vol. 10 (8), pp. 333–342.

5. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3