Granite Crushing Screenings as a Component Factor in the Concrete Structure Formation. Part II: Experimental Studies of Structure-forming Potential

Author:

Makeev A. I.1

Affiliation:

1. Voronezh State Technical University

Abstract

The paper considers the results of experimental studies of the individual and joint influence of macro-, meso- and micro-nanofractions of granite crushing screenings on the processes of structure formation and properties of cement concrete. It has been established that in the processes of formation of the structure of fine-grained concrete and the potential for resistance to its destruction, all fractions of stone crushing screenings perform their specific functions as a component factor. Macro-sized (crushed stone) grains of screening of the 5–10 mm fraction form a macro-scale frame of the addition system, which perceives force load with the accumulation of loading energy and braking of main cracks. Sand mesoparticles of fraction 0.16–5 mm fill the intergranular space of the system for adding macroparticles with dissipation of external loading energy in the matrix material. The microfraction of granite crushing screenings (the fraction is 0.16 mm), along with the effect of replacing the volume of cement stone, exhibits physical and chemical activity in the phase formation of hydrate compounds. It is shown that in the initial screening of granite crushing, the structure-forming role of its particles is not manifested effectively enough, the main reason for which is the “excess” of sand fractions, which push apart the grains of macrofractions and increase the water demand of the concrete mixture. Traditional methods of enriching screenings do not solve this problem. The principle of conditioning screenings by saturating them with macro- and micro-sized fractions is discussed. Based on this principle, a technology for mechanical processing of screenings has been developed to produce a “line” of products for targeted use in the building materials and products industry. The introduction of such technology will significantly increase the efficiency of construction and technological recycling of stone crushing screenings through maximum use of the structure-forming potential of their polydisperse composition.

Publisher

Stroymaterialy

Reference26 articles.

1. Granite Crushing Screenings as a Component Factor of Concrete Structure Formation. Part 1. Problem Definition. Identification of Screenings as a Component Factor of Structure Formation

2. Pukharenko Yu.V., Panarin S.N., Veselova S.I. et. al. Nanomodified concrete based on stone crushing waste. Vestnik grazhdanskikh inzhenerov. 2011. No. 3, pp. 72–76. (In Russian).

3. Makeev A.I. Scientific and technical justification for the technology of deep processing of crushed granite stone screenings. Nauchnyy zhurnal stroitelstva i arkhitektury. 2011. No. 3, pp. 56–67. (In Russian).

4. Morozov N.M., Avksentyev V.I., Borovskikh I.V., Khozin V.G. Application of crushed stone screenings in self-compacting concrete. Magazine of Civil Engineering. 2013. No. 7, pp. 26–31. (In Russian).

5. Demyanova V.S., Chumakova O.A. Integrated use of materials and waste from the extraction of stone crushing of non-metallic minerals in fine-grained concrete of a new generation. Regionalnaya arkhitektura i stroitelstvo. 2014. No. 4, pp. 57–60. (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3