Author:
Abdaoui K.,Gharbi R.,Mabrouk S.,Makhlouf A.
Abstract
UDC 512.5
The aim of this paper is to provide a cohomology of
n
-Hom–Lie color algebras, in particular, a cohomology governing one-parameter formal deformations. Then we also study formal deformations of the
n
-Hom–Lie color algebras and introduce the notion of Nijenhuis operator on a
n
-Hom–Lie color algebra, which may give rise to infinitesimally trivial
(
n
-
1
)
-order deformations. Furthermore, in connection with Nijenhuis operators, we introduce and discuss the notion of product structure on
n
-Hom–Lie color algebras.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Reference31 articles.
1. E. Abdaoui, S. Mabrouk, A. Makhlouf, Cohomology of Hom–Leibniz and $n$-ary Hom–Nambu–Lie superalgebras}; arXiv: 1406.3776 (2014).
2. F. Ammar, I. Ayadi, S. Mabrouk, A. Makhlouf, Quadratic color Hom–Lie algebras, Moroccan Andalusian Meeting on Algebras and their Applications, Springer, Cham (2018), p. 287–312.
3. F. Ammar, S. Mabrouk, A. Makhlouf, Representations and cohomology of $n$-ary multiplicative Hom–Nambu–Lie algebras, J. Geom. and Phys., 61, № 10, 1898–1913 (2011).
4. F. Ammar, N. Saadaoui, Cohomology of $n$-ary-Nambu–Lie superalgebras and super $omega_infty$ 3-algebra}; arXiv:1304.5767 (2013).
5. J. Arnlind, A. Makhlouf, S. Silvestrov, Ternary Hom–Nambu–Lie algebras induced by Hom–Lie algebras, J. Math. Phys., 51, № 4, Article 043515 (2010).