Abstract
UDC 519.21
We revisit, in a didactic manner and by using stochastic analysis, the parametrix method and its application to unbiased simulation. We consider, in particular, the case of one-dimensional diffusions without drift.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Reference16 articles.
1. A. Ancona, K. Elworthy, M. Emery, H. Kunita, Stochastic differential geometry at saint-flour, Probab. St.-Flour, Springer etc. (2012); https://books.google.co.jp/books?id=nlCeMQEACAAJ.
2. P. Andersson, A. Kohatsu-Higa, Unbiased simulation of stochastic differential equations using parametrix expansions, Bernoulli, 23, № 3, 2028–2057 (2016).
3. P. Andersson, A. Kohatsu-Higa, T. Yuasa, Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations, Stochast. Process. and Appl., 130, № 9, 5543–5574 (2020); DOI: 10.1016/ j.spa.2020.03.016; https://ideas. repec.org/a/eee/spapps/v130y2020i9p5543-5574.html.
4. R. F. Bass, E. A. Perkins, On uniqueness in law for parabolic SPDEs and infinite-dimensional SDEs, Electron. J. Probab., 17, № 36, 1–54 (2012); DOI: 10.1214/EJP.v17-2049; https://doi.org/10.1214/EJP.v17-2049.
5. S. Bodnarchuk, D. Ivanenko, A. Kohatsu-Higa, A. Kulik, Improved local approximation for multidimensional diffusions: the $g$-rates, Theory Probab. and Math. Statist., 101, № 1 (2021); DOI: 10.1090/tpms/1109.