Author:
Herrera Franco,Trofimchuk Sergei
Abstract
UDC 517.9
Motivated by the recent work by Ma and Magal [Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629] on the global stability property of the Gurtin–MacCamy's population model, we consider a family of scalar nonlinear convolution equations with unimodal nonlinearities. In particular, we relate the Ivanov and Sharkovsky analysis of singularly perturbed delay differential equations in [https://doi.org/10.1007/978-3-642-61243-5_5] with the asymptotic behavior of solutions of the Gurtin–MacCamy's system. According the classification proposed in [https://doi.org/10.1007/978-3-642-61243-5_5], we can distinguish three fundamental kinds of continuous solutions of our equations, namely, solutions of the asymptotically constant type, relaxation type and turbulent type. We present various conditions assuring that all solutions belong to the first of these three classes. In the setting of unimodal convolution equations, these conditions suggest a generalized version of the famous Wright's conjecture.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)