Author:
Panigrahi T.,Pattnayak E.,El-Ashwah R. M.
Abstract
UDC 517.5
We introduce a new subclass of analytic functions based on the Mathieu-type series related to a petal-shaped domain. We investigate the bounds of the initial coefficient estimates, the Fekete–Szegö inequality, and the Hankel determinant of order two and three.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Reference26 articles.
1. H. Alzer, J. L. Brenner, O. G. Rueh, On Mathieu's inequality, J. Math. Anal. and Appl., 218, 607–610 (1998).
2. M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17, 1615–1630 (2019); DOI: 10.1515/math-2019-0132.
3. K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent function, Inequal. Theory and Appl., 6, 1–7 (2010).
4. D. Bansal, J. Sokół, Geometric properties of Mathieu-type power series inside unit disk, J. Math. Inequal., 13, 911–918 (2019).
5. P. Ceronre, C. T. Lenard, On integral forms of generalized Mathieu series, J. Inequal. Pure and Appl. Math., 4, № 5, 1–11 (2003).