A Constructive Proof for the Umemura Polynomials of the Third Painlevé Equation
-
Published:2023-10-25
Issue:
Volume:
Page:
-
ISSN:1815-0659
-
Container-title:Symmetry, Integrability and Geometry: Methods and Applications
-
language:
-
Short-container-title:SIGMA
Author:
Clarkson Peter A., ,Law Chun-Kong,Lin Chia-Hua, ,
Abstract
We are concerned with the Umemura polynomials associated with rational solutions of the third Painlevé equation. We extend Taneda's method, which was developed for the Yablonskii-Vorob'ev polynomials associated with the second Painlevé equation, to give an algebraic proof that the rational functions generated by the nonlinear recurrence relation which determines the Umemura polynomials are indeed polynomials. Our proof is constructive and gives information about the roots of the Umemura polynomials.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Subject
Geometry and Topology,Mathematical Physics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献