Topology of Almost Complex Structures on Six-Manifolds
-
Published:2022-12-02
Issue:
Volume:
Page:
-
ISSN:1815-0659
-
Container-title:Symmetry, Integrability and Geometry: Methods and Applications
-
language:
-
Short-container-title:SIGMA
Author:
Granja Gustavo, ,Milivojević Aleksandar,
Abstract
We study the space of (orthogonal) almost complex structures on closed six-dimensional manifolds as the space of sections of the twistor space for a given metric. For a connected six-manifold with vanishing first Betti number, we express the space of almost complex structures as a quotient of the space of sections of a seven-sphere bundle over the manifold by a circle action, and then use this description to compute the rational homotopy theoretic minimal model of the components that satisfy a certain Chern number condition. We further obtain a formula for the homological intersection number of two sections of the twistor space in terms of the Chern classes of the corresponding almost complex structures.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Subject
Geometry and Topology,Mathematical Physics,Analysis