Author:
Berntson Bjorn K., ,Kalnins Ernest G.,Miller Willard, ,
Abstract
We make significant progress toward the classification of 2nd order superintegrable systems on 3-dimensional conformally flat space that have functionally linearly dependent (FLD) symmetry generators, with special emphasis on complex Euclidean space. The symmetries for these systems are linearly dependent only when the coefficients are allowed to depend on the spatial coordinates. The Calogero-Moser system with 3 bodies on a line and 2-parameter rational potential is the best known example of an FLD superintegrable system. We work out the structure theory for these FLD systems on 3D conformally flat space and show, for example, that they always admit a 1st order symmetry. A partial classification of FLD systems on complex 3D Euclidean space is given. This is part of a project to classify all 3D 2nd order superintegrable systems on conformally flat spaces.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Subject
Geometry and Topology,Mathematical Physics,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献