The Laplace-Beltrami Operator on the Surface of the Ellipsoid
-
Published:2024-07-25
Issue:
Volume:
Page:
-
ISSN:1815-0659
-
Container-title:Symmetry, Integrability and Geometry: Methods and Applications
-
language:
-
Short-container-title:SIGMA
Abstract
The Laplace-Beltrami operator on (the surface of) a triaxial ellipsoid admits a sequence of real eigenvalues diverging to plus infinity. By introducing ellipsoidal coordinates, this eigenvalue problem for a partial differential operator is reduced to a two-parameter regular Sturm-Liouville problem involving ordinary differential operators. This two-parameter eigenvalue problem has two families of eigencurves whose intersection points determine the eigenvalues of the Laplace-Beltrami operator. Eigenvalues are approximated numerically through eigenvalues of generalized matrix eigenvalue problems. Ellipsoids close to spheres are studied employing Lamé polynomials.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)