Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology

Author:

Chirvasitu Alexandru, ,Peng Jun,

Abstract

Consider a compact group $G$ acting on a real or complex Banach Lie group $U$, by automorphisms in the relevant category, and leaving a central subgroup $K\le U$ invariant. We define the spaces ${}_KZ^n(G,U)$ of $K$-relative continuous cocycles as those maps ${G^n\to U}$ whose coboundary is a $K$-valued $(n+1)$-cocycle; this applies to possibly non-abelian $U$, in which case $n=1$. We show that the ${}_KZ^n(G,U)$ are analytic submanifolds of the spaces $C(G^n,U)$ of continuous maps $G^n\to U$ and that they decompose as disjoint unions of fiber bundles over manifolds of $K$-valued cocycles. Applications include: (a) the fact that ${Z^n(G,U)\subset C(G^n,U)}$ is an analytic submanifold and its orbits under the adjoint of the group of $U$-valued $(n-1)$-cochains are open; (b) hence the cohomology spaces $H^n(G,U)$ are discrete; (c) for unital $C^*$-algebras $A$ and $B$ with $A$ finite-dimensional the space of morphisms $A\to B$ is an analytic manifold and nearby morphisms are conjugate under the unitary group $U(B)$; (d) the same goes for $A$ and $B$ Banach, with $A$ finite-dimensional and semisimple; (e) and for spaces of projective representations of compact groups in arbitrary $C^*$ algebras (the last recovering a result of Martin's).

Publisher

SIGMA (Symmetry, Integrability and Geometry: Methods and Application)

Subject

Geometry and Topology,Mathematical Physics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subgroup Proximity in Banach Lie Groups;Transformation Groups;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3