Recurrence Coefficients for Orthogonal Polynomials with a Logarithmic Weight Function
-
Published:2024-01-10
Issue:
Volume:
Page:
-
ISSN:1815-0659
-
Container-title:Symmetry, Integrability and Geometry: Methods and Applications
-
language:
-
Short-container-title:SIGMA
Author:
,Deift Percy,Piorkowski Mateusz,
Abstract
We prove an asymptotic formula for the recurrence coefficients of orthogonal polynomials with orthogonality measure $\log \bigl(\frac{2}{1-x}\bigr) {\rm d}x$ on $(-1,1)$. The asymptotic formula confirms a special case of a conjecture by Magnus and extends earlier results by Conway and one of the authors. The proof relies on the Riemann-Hilbert method. The main difficulty in applying the method to the problem at hand is the lack of an appropriate local parametrix near the logarithmic singularity at $x = +1$.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)