Tracking Control for $(x,u)$-Flat Systems by Quasi-Static Feedback of Classical States
-
Published:2024-07-31
Issue:
Volume:
Page:
-
ISSN:1815-0659
-
Container-title:Symmetry, Integrability and Geometry: Methods and Applications
-
language:
-
Short-container-title:SIGMA
Author:
Gstöttner Conrad, ,Kolar Bernd,Schöberl Markus, ,
Abstract
It is well known that for flat systems the tracking control problem can be solved by utilizing a linearizing quasi-static feedback of generalized states. If measurements (or estimates) of a so-called generalized Brunovský state are available, a linear, decoupled and asymptotically stable tracking error dynamics can be achieved. However, from a practical point of view, it is often desirable to achieve the same tracking error dynamics by feedback of a classical state instead of a generalized one. This is due to the fact that the components of a classical state typically correspond to measurable physical quantities, whereas a generalized Brunovský state often contains higher order time derivatives of the (fictitious) flat output which are not directly accessible by measurements. In this paper, a systematic solution for the tracking control problem based on quasi-static feedback and measurements of classical states only is derived for the subclass of $(x,u)$-flat systems.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)