Exponential Formulas, Normal Ordering and the Weyl-Heisenberg Algebra
-
Published:2021-09-15
Issue:
Volume:
Page:
-
ISSN:1815-0659
-
Container-title:Symmetry, Integrability and Geometry: Methods and Applications
-
language:
-
Short-container-title:SIGMA
Author:
Meljanac Stjepan, ,Štrajn Rina, , , , ,
Abstract
We consider a class of exponentials in the Weyl-Heisenberg algebra with exponents of type at most linear in coordinates and arbitrary functions of momenta. They are expressed in terms of normal ordering where coordinates stand to the left from momenta. Exponents appearing in normal ordered form satisfy differential equations with boundary conditions that could be solved perturbatively order by order. Two propositions are presented for the Weyl-Heisenberg algebra in 2 dimensions and their generalizations in higher dimensions. These results can be applied to arbitrary noncommutative spaces for construction of star products, coproducts of momenta and twist operators. They can also be related to the BCH formula.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Subject
Geometry and Topology,Mathematical Physics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献