Total Mean Curvature and First Dirac Eigenvalue
-
Published:2023-05-25
Issue:
Volume:
Page:
-
ISSN:1815-0659
-
Container-title:Symmetry, Integrability and Geometry: Methods and Applications
-
language:
-
Short-container-title:SIGMA
Author:
Raulot Simon, , ,
Abstract
In this note, we prove an optimal upper bound for the first Dirac eigenvalue of some hypersurfaces in the Euclidean space by combining a positive mass theorem and the construction of quasi-spherical metrics. As a direct consequence of this estimate, we obtain an asymptotic expansion for the first eigenvalue of the Dirac operator on large spheres in three-dimensional asymptotically flat manifolds. We also study this expansion for small geodesic spheres in a three-dimensional Riemannian manifold. We finally discuss how this method can be adapted to yield similar results in the hyperbolic space.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Subject
Geometry and Topology,Mathematical Physics,Analysis