On the Abuaf-Ueda Flop via Non-Commutative Crepant Resolutions
-
Published:2021-04-30
Issue:
Volume:
Page:
-
ISSN:1815-0659
-
Container-title:Symmetry, Integrability and Geometry: Methods and Applications
-
language:
-
Short-container-title:SIGMA
Abstract
The Abuaf-Ueda flop is a 7-dimensional flop related to G<sub>2</sub> homogeneous spaces. The derived equivalence for this flop was first proved by Ueda using mutations of semi-orthogonal decompositions. In this article, we give an alternative proof for the derived equivalence using tilting bundles. Our proof also shows the existence of a non-commutative crepant resolution of the singularity appearing in the flopping contraction. We also give some results on moduli spaces of finite-length modules over this non-commutative crepant resolution.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Subject
Geometry and Topology,Mathematical Physics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献