Abstract
Let $f(z) = \dsum_{k = 1}^{\infty}f_k z^{k}$ be an entire transcendental function, let $(\lambda_n)$ be a sequence of positive numbers increasing to $+ \infty$, and let the series $A(z) = \dsum_{n = 1}^{\infty}a_nf(\lambda_n z)$ be regularly convergent in ${\mathbb{D}} = \{z\colon |z|<1\}$. The starlikeness and convexity of the function $A$ are studied. For example, if $\dsum_{n = 1}^{\infty}\lambda^{-\tau}_n = T< + \infty$, $\ln |a_n|\le -e\lambda_n$, and $T\dsum_{k = 2}^{\infty}k|f_k| (k + \tau)^{k + \tau}\le \left|f_1\dsum_{n = 1}^{\infty}a_n\lambda_n\right|$, then the function $A$ is starlike. It is proved that, under certain conditions on the parameters, the differential equation $z^2w'' + (\beta_0 z^2 + \beta_1z)w' + (\gamma_0z^2 + \gamma_1 z + \gamma_2) w = 0$ has an entire solution $A$ that is starlike or convex in ${\mathbb{D}}$.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Reference12 articles.
1. 1. G. M. Golusin, Geometrical theory of functions of complex variables [in Russian], Nauka, Moscow (1966).
2. 2. A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, № 3, 597-601 (1957).
3. 3. I. S. Jackc, Functions starlike and convex of order $\alpha$, J. Lond. Math. Soc., 3, 469-474 (1971).
4. 4. V. P. Gupta, Convex class of starlike functions, Yokohama Math. J., 32, 55-59 (1984).
5. 5. M. M. Sheremeta, S. I. Fedynyak, On the derivative of Dirichlet series, Sib. Math. J., 39, № 1, 206-223 (1998).