Abstract
UDC 512.5
We study the
n
-generalized Schützenberger-crossed product from the viewpoint of combinatorial group theory and define a new version of this product. For given monoids of this new product, we obtain a representation of the
n
-generalized Schützenberger-crossed product of arbitrary monoids.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Reference17 articles.
1. A. L. Agore, G. Militaru, Crossed product of groups, applications, Arab. J. Sci. Eng., 33, 1–17 (2008).
2. A. L. Agore, D. Fratila, Crossed product of cyclic groups, Czech. Math. J., 60, 889–901 (2010) .
3. F. Ateş, Some new monoid and group constructions under semidirect product, Ars Combin., 91, 203–218 (2009).
4. F. Ateş, A. S. Şevik, Knit products of some groups and their applications, Rend. Semin. Mat. Univ. Padova, 2, 1–12 (2009).
5. E. K. Şetinalp, E. G. Karpuz, F. Ateş, A. S. Şevik, Two-sided crossed product of groups, Filomat, 30, № 4, 1005–1012 (2016).