Abstract
UDC 512.64
Let
A
and
B
be bicomplete Abelian categories, which both have enough projectives and injectives and let
T
:
A
→
B
be a right exact functor. Under some mild conditions, we show that hereditary Abelian model structures on
A
and
B
can be amalgamated into a global hereditary Abelian model structure on the comma category
(
T
↓
B
)
. As an application of this result, we give an explicit description of a subcategory that consists of all trivial objects of the Gorenstein flat model structure on the category of modules over a triangular matrix ring.
Publisher
SIGMA (Symmetry, Integrability and Geometry: Methods and Application)
Reference15 articles.
1. M. Auslander, M. Bridger, Stable module theory, memoirs of the american mathematical society, Mem. Amer. Math. Soc., № 94, Amer. Vfth Soc. Providence, R.I. (1969).
2. E. E. Enochs, M. Cortés-Izurdiaga, B. Torrecillas, Gorenstein conditions over triangular matrix rings, J. Pure and Appl. Algebra, 218, № 8, 1544–1554 (2014).
3. E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220, № 4, 611–633 (1995).
4. E. E. Enochs, O. M. G. Jenda, Relative homological algebra, De Gruyter Exp. Math., vol. 30, Walter de Gruyter & Co., Berlin (2000).
5. E. E. Enochs, O. M. G. Jenda, B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 10, № 1, 1–9 (1993).