Abstract
"In this paper we prove that, if f:[0,∞)→R is operator monotone on [0,∞), then for all A, B such that 0<α≤A≤β<γ≤B≤δ for some positive constants α, β, γ, δ, 0≤(γ-β)((f(δ)-f(β))/(δ-β))≤f(B)-f(A)≤(δ-α)((f(γ)-f(α))/(γ-α)). In particular, we have the refinement and reverse of the celebrated Löwner-Heinz inequality 0<(γ-β)((δ^{r}-β^{r})/(δ-β))≤B^{r}-A^{r}≤(δ-α)((γ^{r}-α^{r})/(γ-α)) for all r∈(0,1]."
Subject
Computer Science Applications,General Mathematics
Reference8 articles.
1. "[1] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics 169, Springer-Verlag, New York, 1997. xii+347
2. [2] J. I. Fujii and Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), 301-306.
3. [3] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation, Linear Algebra Appl. 429 (2008), 972-980.
4. [4] T. Furuta, Precise lower bound of f(A) − f(B) for A > B > 0 and non-constant operator monotone function f on [0, ∞), J. Math. Inequal. 9 (2015), no. 1, 47-52.
5. [5] E. Heinz, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann. 123 (1951), 415-438.