Abstract
In this paper, we define the notions of neutrosophic $ \mathfrak{Y} $-Ces\`aro summability of a sequence of order $ \alpha $, neutrosophic $ \mathfrak{Y} $-lacunary statistical convergence of order $ \alpha $, neutrosophic strongly $ \mathfrak{Y} $-lacunary statistical convergence of order $ \alpha $ and neutrosophic strongly $ \mathfrak{Y} $-Ces\`aro summability of order $ \alpha $ in neutrosophic probability. Besides, we prove some relations among them.
Reference17 articles.
1. "[1] V.K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York, 1976. DOI: 10.1002/bimj.4710210813
2. [2] S.K. Ghosal, Statistical convergence of a sequence of random variables and limit function, Applications of Mathematics 58 (2013), no. 4, 423-437.
3. [3] F. Smarandache, Neutrosophic Probability, Set, and Logic (first version), In: F. Smarandache: Collected Papers, vol. III, Editura Abaddaba, Oradea, Romania, 2000.
4. [4] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
5. [5] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.