Exhaustive Optimization Method Applied on Electromagnetic Device

Author:

Dolan Alin-Iulian,

Abstract

This paper presents the application of an exhaustive optimization method based on the design of experiments (DOE) and the finite element method (FEM), with the aim of improving the actuation force developed by a DC electromagnet. The optimization of this device has been the subject of several previous works, allowing comparisons between the optimization methods applied in terms of the obtained precision and the workload. According to previous studies, two geometric parameters (the angle ratio of the support tip and the coil shape ratio) are very influential on the force developed at the maximum air gap. Thus, the exhaustive optimization method took into account these two parameters for its maximization, having as constraints the maintenance of the global dimensions of the device (external radius, the height of carcass, height of the plunger with support) and of the cross-section of the winding. The optimization algorithm used the results of 2-D FEM numerical experiments carried out with the FEMM program in combination with the LUA language and is based on the response surface methodology (RSM) and analysis of variance (ANOVA). Second-order polynomial models of the objective function were calculated using full factorial designs with three levels per factor. After three iterations, a very good result was obtained, comparable to those obtained by other methods, but with a significant cost in terms of workload, the optimum obtained being a global one.

Publisher

University of Craiova

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3