Analysis of Industrial Sensor Data Using Statistical and Regression Methods

Author:

Ferencz Katalin,Domokos József,Kovács Levente

Abstract

Today's industrial landscape is primarily driven by rapid and effective data processing and evaluation. Consequently, industries should devote considerable attention and resources towards real-time examination of the large data sets acquired, enabling timely extraction of vital information for outlier detection, fake data identification, and predictive analysis to mitigate unforeseen expenses. This rigorous process of data analysis necessitates the employment of a diverse set of algorithms that align with the specific objectives, spanning a wide spectrum of potential solutions. In this manuscript, we demonstrate how Apache Spark's unified engine can be harnessed for conducting statistical analysis of time series data, thereby expediting industrial data analysis processes. Furthermore, we examine and implement both linear and random forest regression models within the context of the demonstrated use case.

Publisher

University of Craiova

Reference19 articles.

1. Várkonyi-Kóczy, A.R., J.Z. Szabó. "Soft Computing Based Methods in Diagnostics" (Lágyszámítási módszerekkel támogatott diagnosztikai módszerek), XXI. Nemzetközi Gépészeti Találkozó, OGÉT’2013, (VJ. Csibi ed., 460 p.,, EMT, Cluj, Romania), Arad, Romania, Apr. 25-28, 2013, pp. 427-430.

2. Várkonyi-Kóczy, Annamária R., Péter Baranyi, and Ron J. Patton. "Anytime fuzzy modeling approach for fault detection systems." Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No. 03CH37412). Vol. 2. IEEE, 2003.

3. Ferencz, Katalin, József Domokos, and Levente KovÁcs. "A statistical approach to time series sensor data evaluation using Apache Spark modules." 2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE, 2022.

4. Samu, Gabor, and A. R. Várkonyi-Kóczy. "Intelligent monitor for anytime systems." IEEE International Symposium on Intelligent Signal Processing, 2003. IEEE, 2003.

5. Samu, Gabor. Intelligent monitor for anytime systems. Diss. 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3