Accelerated Reduced Gradient Algorithm with Constraint Relaxation in Differential Inverse Kinematics

Author:

Varga Bence,Issa Hazem,Horváth RichárdORCID,Tar JózsefORCID

Abstract

The Moore-Penrose pseudoinverse-based solution of the differential inverse kinematic task of redundant robots corresponds to the result of a particular optimization underconstraints in which the implementation of Lagrange’s ReducedGradient Algorithm can be evaded simply by considering the zero partial derivatives of the ”Auxiliary Function” associated with this problem. This possibility arises because of the fact that the cost term is built up of quadratic functions of the variable of optimization while the constraint term is linear function of the same variables. Any modification in the cost and/or constraint structure makes it necessary the use of the numerical algorithm. Anyway, the penalty effect of the cost terms is always overridden by the hard constraints that makes practical problems in the vicinity of kinematic singularities where the possible solution stillexists but needs huge joint coordinate time-derivatives. While in the special case the pseudoinverse simply can be deformed, inthe more general one more sophisticated constraint relaxation can be applied. In this paper a formerly proposed acceleratedtreatment of the constraint terms is further developed by the introduction of a simple constraint relaxation. Furthermore, thenumerical results of the algorithm are smoothed by a third order tracking strategy to obtain dynamically implementable solution.The improved method’s operation is exemplified by computation results for a 7 degree of freedom open kinematic chain

Publisher

University of Craiova

Reference33 articles.

1. C.S.G. Lee and M. Ziegler. RSD-TR-1-83 A geometric approach is solving the inverse kinematics of PUMA robots. The University of Michigan, Ann Arbor, Michigan 48109-1109, 1983.

2. A. Benitez, I. Huitzil, A. Casiano, J. De La Calleja, and M.A. Medina. Puma 560: Robot prototype with graphic simulation environment. Advances in Mechanical Engineering, 2(1):15–22, 2012.

3. P. Chang. A closed-form solution for the control of manipulators with kinematic redundancy. In Proceedings. 1986 IEEE International Conference on Robotics and Automation, volume 3, pages 9–14. IEEE, 1986.

4. J. Baillieul. Kinematic programming alternatives for redundant manipulators. In Proceedings. 1985 IEEE International Conference on Robotics and Automation, volume 2, pages 722–728. IEEE, 1985.

5. O. Egeland. Task-space tracking with redundant manipulators. IEEE Journal on Robotics & Automation, 3(5):471–475, 1987.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3