Impact of substrates on the electrical properties of thin chromium films [Online First]

Author:

Udachan Shiva L.ORCID,Ayachit N. H.ORCID,Udachan L. A.ORCID

Abstract

Objective: We studied the impact of substrates on the electrical properties of thin chromium films. Substrates may serve many purposes, such as to define orientation, to conduct electrical current in vertical devices, as a gate in transistors, etc. The thickness range of the chromium films grown on both substrates was (3.5-70) nm. Methods and materials: We used Fuchs-Sondheimer(FS) and Mayadas-Shatzkes(MS) theories to analyze electrical resistivity data for chromium(Cr) films grown on both substrates simultaneously by thermal evaporation in vacuum, under identical deposition conditions. Results and discussion: The infinitely thick film resistivity (ρ0), conduction electron mean free path(l), specularity parameter(p), scattering power of the grain boundary(α') and grain boundary reflection coefficient(R') were found to depend upon the nature of the substrate and the binding force between them and evaporated chromium atoms. The growth and microstructure of the chromium films were examined using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conclusions: Our experimental data exactly fits with the MS theory in the entire thickness range grown for the chromium films deposited on both the substrates. Examination of film structure by SEM indicated that the films consist of grains of relatively pure chromium of different sizes, and depends upon deposition conditions and parameters, which are important factors that dictate the structural properties of the films.

Publisher

Editorial Pontificia Universidad Javeriana

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3