A novel textile wastewater treatment using ligninolytic co-culture and photocatalysis with TiO2

Author:

Blanco-Vargas AndreaORCID,Ramírez-Sierra Christian FernandoORCID,Duarte Castañeda Marcela,Beltrán-Villarraga Milena,Medina-Córdoba Luz Karime,Florido-Cuellar Alex EnriqueORCID,Cardona-Bedoya Jairo ArmandoORCID,Campos-Pinilla María ClaudiaORCID,Pedroza-Rodriguez Aura MarinaORCID

Abstract

Textile industries produce effluent waste water that, if discharged, exerts a negative impact on the environment. Thus, it is necessary to design and implement novel waste water treatment solutions. A sequential treatment consisting of ligninolytic co-culture with the fungi Pleurotus ostreatus and Phanerochaete crhysosporium (secondary treatment) coupled to TiO2/UV photocatalysis (tertiary treatment) was evaluated in the laboratory in order to discolor, detoxify, and reuse textile effluent waste water in subsequent textile dyeing cycles. After 48 h of secondary treatment, upto 80 % of the color in the waste water was removed and its chemical and biochemical oxygen demands (COD, and BOD5) were abated in 92 % and 76 %, respectively. Laccase and MnP activities were central to color removal and COD and BOD5 abatement, exhibiting activity values of 410 U.L-1 and 1 428 U.L-1, respectively. Subjecting waste water samples to 12h of tertiary treatment led to an 86 % color removal and 73 % and 86 % COD and BOD5 abatement, respectively. The application of  a sequential treatment for 18 h improved the effectiveness of the waste water treatment, resultingin 89 % of color removal, along with 81 % and 89 % COD and BOD5 abatement, respectively. With this sequential treatment a bacterial inactivation of 55 % was observed. TiO2 films were reused continuously during two consecutive treatment cycles without thermic reactivation. Removal percentages greater than 50 % were attained. Acute toxicity tests performed with untreated waste water led to a lethality level of 100 % at 50 % in Hydra attenuata and to a growth inhibition of 54 % at 50 % in Lactuca sativa. Whereas sequentially treated waste water excreted a 13 % lethality at 6.25 % and aninhibition of 12 % at 75 % for H. attenuata and L. sativa, respectively. Finally, sequentially treated waste water was reused on dyeing experiments in which 0.86 mg.g-1 adsorbed dye per g of fabric, that is equivalent to 80 % of dye adsorption.

Publisher

Editorial Pontificia Universidad Javeriana

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3