Decreased rotavirus infection of MA104 cells via probiotic extract binding to Hsc70 and ß3 integrin receptors

Author:

Salas-Cárdenas Sandra Patricia,Olaya-Galán Nury Natalia,Fernández Karem,Velez Fernando,Guerrero Carlos Arturo,Guitiérrez Maria Fernanda

Abstract

Probiotic bacteria are microorganisms beneficial to human health, useful to improving biological conditions. Thanks to probiotic bacteria the symptoms of viral infections can be alleviated. Different mechanisms whereby probiotic bacteria exert they antiviral effect have been proposed. The aim of this study was to determine whether probiotic bacteria extracts bind to receptors of host cells susceptible of rotavirus (RV) infection. To accomplish this objective, four probiotic bacterial strains of Lactobacillus spp. and Bifidobacterium spp. were tested. Probiotic extracts were obtained after bacterial growth, cell lysis and centrifugation. Obtained probiotic extracts were used in assays to interfere with adhesion and penetration of a RV strain in the mammal cell line MA104. Furthermore, the interaction between probiotic extracts and MA104 cell receptors was evaluated by co-immunoprecipitation assays using anti-ß3-integrins and anti-Hsc70 antibodies. All four probiotic, protein-rich, extracts reduced RV infections in MA104 cells, suggesting a successful antiviral activity mediated by these probiotic extracts. All probiotic extracts significantly exerted thir antiviral activity by interfering with RV adhesion on MA104 cell receptors, with proteins in probiotic extracts competitively interacting with cell surface receptors necessary to RV infection. Co-immunoprecipitation assay results showed that proteins in probiotic extracts were able to bind to ß3-integrinsand Hsc70, which are two cellular receptors required to viral infection. The most significant contribution of this study is an insight into the mechanisms of probiotic antiviral activity, thus expanding current probiotics fundamental knowledge.

Publisher

Editorial Pontificia Universidad Javeriana

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3