Analyzing COVID-19 Sentiments on Twitter: An Effective Machine Learning Approach

Author:

Qutab Irfan,Fatima Unaiza,Aqeel Muhammad,Ahmed Imtiaz

Abstract

The COVID-19 pandemic has brought about a surge in online discussions and social media activity, making it crucial to analyze public sentiment towards the virus and related topics. This thesis focuses on Sentiment Analysis of COVID-19 data on Twitter, employing Multinomial Logistic Regression as the primary classification algorithm. This research explores Sentiment Analysis of COVID-19 data on Twitter using Multinomial Logistic Regression. It constructs a tweet dataset reflecting various sentiments—positive, negative, and neutral. The data undergoes preprocessing, and a Sentiment Analysis model is built, with 70% of data for training and 30% for testing. The model uses Count-Vectorizer, Tf-idf for feature extraction, and Multinomial Logistic Regression to classify tweets. The study achieves state-of-the-art results with a high accuracy of 95.14%, demonstrating the effectiveness of this approach. The results offer valuable insights into public sentiment during crises, aiding in decision-making and communication strategies.

Publisher

International Journal of Innovative Science and Research Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parents’ Support and Students’ Continuation among Universal Secondary Education Schools in Masaka City, Uganda;International Journal of Innovative Science and Research Technology (IJISRT);2024-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3