Advanced Machine Learning Techniques for Predicting Gold and Silver Futures

Author:

Roy Dipankar,Ghosh Joyita,Choudhary Abhik,Gupta Subir,Mandal Kamaluddin

Abstract

This research focuses on predicting the future values of gold and silver futures by employing advanced machine learning algorithms. Traditional econometric models often struggle with commodity prices’ non-linear and dynamic nature. To address this, the study evaluates the performance of four unconventional machine learning algorithms: Gaussian Processes, Quantile Regression Forests, Extreme Learning Machines, and Support Vector Regression with an RBF kernel. The dataset used includes monthly trading data for gold and silver futures. The research findings indicate that these machine- learning models significantly enhance prediction accuracy. Support Vector Regression with an RBF kernel demonstrated the highest accuracy for gold futures predictions, while Extreme Learning Machines performed competitively for silver futures. This study highlights the potential of advanced machine learning techniques in financial forecasting, providing valuable insights for traders and investors in optimizing their strategies.

Publisher

International Journal of Innovative Science and Research Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Simulation and Analysis of Anisotropic Warp Fields with Positive Energy;International Journal of Innovative Science and Research Technology (IJISRT);2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3