Author:
Gunje Abhishek,Pataskar Shweta,Rane Pranali,Vaidya P.P.
Abstract
This research project presents a comprehensive strategy aimed at mitigating the pervasive threat of human trafficking through the innovative application of machine learning methodologies. The primary objective revolves around the development and deployment of sophisticated algorithms to identify and intercept human trafficking- related communications. Leveraging the power of Support Vector Machine (SVM) classification, the system meticulously scrutinizes textual data streams, flagging messages indicative of trafficking activities for further investigation. Moreover, our approach extends beyond mere message analysis by incorporating cutting-edge Utilize Convolutional Neural Network (CNN) models for performing facial recognition, age estimation, and gender identification. By harnessing the rich visual information embedded in images and videos, the system enhances its capability to identify potential victims and perpetrators with unprecedented accuracy and efficiency. A pivotal component of our solution is the seamless integration of an alert mechanism facilitated by a Simple Mail Transfer Protocol (SMTP) server. This critical feature ensures that pertinent authorities are promptly notified upon the detection of suspicious activities, enabling swift and decisive intervention. Through this amalgamation of advanced technological frameworks, our research endeavors to empower law enforcement agencies and humanitarian organizations in their tireless efforts to combat the heinous crime of human trafficking. In essence, this research represents a significant stride towards the realization of a technologically fortified defense against the exploitation of vulnerable individuals. By amalgamating state-of-the- art machine learning techniques with real-time alert systems, we aspire to create a formidable deterrent against the perpetrators of this egregious crime, thereby Ensuring the protection of human dignity and advocating for social justice.
Publisher
International Journal of Innovative Science and Research Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Biometric Attendance Systems for Educational Institutions;International Journal of Innovative Science and Research Technology (IJISRT);2024-04-16