Enhanced Profile Hidden Markov Model for Metamorphic Malware Detection

Author:

D. Javier Ken Carlo,P. Catura Allyza Maureen,C. Morano Jonathan,R. Blanco Mark Christopher

Abstract

Metamorphic malware poses a significant threat to conventional signature-based malware detection since its signature is mutable. Multiple copies can be created from metamorphic malware. As such, signature- based malware detection is impractical and ineffective. Thus, research in recent years has focused on applying machine learning-based approaches to malware detection. Profile Hidden Markov Model is a probabilistic model that uses multiple sequence alignments and a position-based scoring system. An enhanced Profile Hidden Markov Model was constructed with the following modifications: n-gram analysis to determine the best length of n-gram for the dataset, setting frequency threshold to determine which n-gram opcodes will be included in the malware detection, and adding consensus sequences to multiple sequence alignments. 1000 malware executables files and 40 benign executable files were utilized in the study. Results show that n-gram analysis and adding consensus sequence help increase malware detection accuracy. Moreover, setting the frequency threshold based on the average TF-IDF of n-gram opcodes gives the best accuracy in most malware families than just by getting the top 36 most occurring n-grams, as done in previous studies.

Publisher

International Journal of Innovative Science and Research Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BlockTender: A Trustworthy System;International Journal of Innovative Science and Research Technology (IJISRT);2024-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3