Abstract
The most devastating natural disasters on earth are earthquakes that causes long-term effects on geography, civilization, and human life. These unpredictable events pose a serious threat to infrastructure. Furthermore, the current Earthquake Early Warning (EEW) systems are facing issues such as limited warning times, false alarms, maintenance costs, high construction costs, and data interpretation. Highlighting these as an urgent need for mitigation measures, there is a need to improve the effectiveness of electronic alerts and public safety measures. For this transformative machine learning techniques and the integration of disparate data, can embark on creating social security and lives protecting from major environmental disasters like earthquakes. This paper has compared various Machine Learning (ML) techniques by training them by using two datasets: one from India and another from India United States Geological from Research World Database to improve the robustness and generality of the earthquake prediction model in the Earthquake Early Warning (EEW) framework. This represents a major advance for earthquake detection and promises to reduce response time. Among various ML Techniques, Random Forest has performed well in earthquake warning with 96.06% accuracy and 98.6% precision.
Publisher
International Journal of Innovative Science and Research Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献