Music Genre Classification

Author:

Swathi Y.,Snigdha N.,Akhila I.,Sowmya M.,Balaji M.

Abstract

The Music Genre Classification model automatically divides music into different genres using a small number of audio files and a range of musical attributes. This topic is highly relevant to the field of music information retrieval since it provides a way to organize and analyze large amounts of music files. For MGC, standard machine learning techniques such as SVM, KNN, Decision trees, and neural networks can be applied. These algorithms are trained to recognize different musical qualities and traits, which allows them to categorize the audio files into different genres. Numerous applications show that deep learning algorithms—such as CNN, ANN, and others—perform better than conventional machine learning algorithms. Consequently, the CNN method is adjusted to perform the categorization of music files. This classifies musical genres using deep learning methods from CNN. To evaluate the effectiveness of the MGC algorithms, accuracy is used. Moreover, the impact of different algorithms on MGC performance can be compared and studied. It can be applied to automated music recommendation systems, music production, and music education.

Publisher

International Journal of Innovative Science and Research Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Examining the Benefits and Drawbacks of the Sand Dam Construction in Cadadley Riverbed;International Journal of Innovative Science and Research Technology (IJISRT);2024-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3