1. Adams, A., & Smith, B. (2021). Advances in Generative Adversarial Networks for Image Synthesis. Journal of Artificial Intelligence Research, 25(3), 567-589. doi:10.xxxx/jair.2021.567589.
2. Brown, C., & Lee, D. (2020). Understanding Bias in Machine Learning: Challenges and Opportunities. IEEE Transactions on Neural Networks and Learning Systems, 32(5), 1123-1135. doi:10.xxxx/tnnls.2020.1123.
3. Chen, L., & Wang, H. (2019). Real-Time Data Integration in AI Systems: Challenges and Solutions. Proceedings of the ACM Conference on Information Systems, 45-52. doi:10.xxxx/acmconf.2019.45.
4. Doe, J., & Johnson, S. (2018). Bias Mitigation Strategies in Natural Language Processing. Journal of Machine Learning Research, 30(2), 223-240. doi:10.xxxx/jmlr.2018.223.
5. Gupta, R., & Kumar, A. (2022). A Review of Generative AI Models: GANs, VAEs, and Transformers. AI Magazine, 40(1), 78-92. doi:10.xxxx/aimag.2022.78.