SMART FARM: Crop, Fertiliser and Disease Management through Machine Learning and Deep Learning Applications

Author:

Bhavika Muttareddy,Ashwanth Pannala,Abhishek Valaboju

Abstract

In the environment of global challenges similar as population growth, climate change, and resource constraints, the agrarian sector faces significant pressure to enhance productivity and sustainability. This paper explores the conception and perpetration of a Smart Farm, which leverages advanced technologies similar as the Internet of effects( IoT), artificial intelligence( AI), big data analytics, and robotics to optimize husbandry practices. The Smart husbandry, automated ministry, and data driven decision-making processes to increase crop yields, reduce resource consumption, and ameliorate environmental stewardship. Case studies punctuate successful operations of these technologies in colorful husbandry surrounds, demonstrating significant advancements in effectiveness and sustainability. The findings emphasize the eventuality of Smart granges to transfigure traditional husbandry into a largely productive, flexible, and sustainable assiduity, able of meeting unborn food security demands.

Publisher

International Journal of Innovative Science and Research Technology

Reference27 articles.

1. Hangzhi Guo, Alexander Woodruff, Amulya Yadav (2020) - Improving Lives of Indebted Farmers Using Deep https://ojs.aaai.org/index.php/AAAI/artic le/view /7039

2. Bai, S.; Kolter, J. Z.; and Koltun, V. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. ArXiv preprint arXiv:1803.01271.

3. Barik, N. 2018. Analysis ofinterventions addressing farmer distress in Rajasthan. https://www. copenhagenconsensus.com/sites/default/files/rajfarmer distress sm.pdf

4. DARD. 2019. Vegetable Production in Kwazulu-Natal: Length of Growing Period. https://www. kzndard.gov.za/images/ Documents/Horticulture/Veg prod/length of growing period.pdf.

5. Ma, W.; Nowocin, K.; Marathe, N.; and Chen, G. H. 2019. An interpretable produce price forecasting system for small and marginal farmers in India using collaborative filtering and adaptive nearest neighbors. In Proceedings of the Tenth International Conference on Information and Communication Technologies and Development, 6. ACM.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing IT Infrastructure with Fiber Optics: Revolutionizing Data Flow and Beyond;International Journal of Innovative Science and Research Technology (IJISRT);2024-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3