Strengthening of RC Beam with GFRP Composites in Shear N. B. Bhopale

Author:

Bhopale N. B.,Manjarekar A.S.

Abstract

The rehabilitation, repair and strengthening of existing reinforced concrete (RC) structures is essential due to factors such as aging, steel reinforcement corrosion, construction/design defects, increased service loads demand, seismic events, and advancements in design guidelines. Fiber-reinforced polymers (FRP) are now being recognized as a promising material for the rehabilitation of such structures, through strengthening or repairing. In buildings and bridges, RC sections are commonly found in the form of beams and girders. Shear failure of RC beams is particularly due to its sudden occurrence without warning. Therefore, the utilization of externally bonded (EB) FRP composites for shear strengthening of RC beams has gathered popularity as a structural enhancement technique, primarily due to advantages of FRP composites, such as high strength-to- weight ratio and exceptional corrosion resistance. In addition, FRP repair systems give a cost-saving choice to traditional repair methods and materials. A study was performed to analyse the shear characteristics of RC beams enhanced with continuous glass fiber-reinforced polymer (GFRP) sheets. Reinforced concrete beams externally bonded GFRP sheets subjected to failure using a symmetrical two-point concentrated static loading system. The experimental data obtained included load, deflection, and failure modes of each beam, along with the effect of the number of GFRP layers on the beams The failures observed in strengthened beams typically commence with the debonding of the FRP sheets, followed by brittle shear failure. The shear capacities of these beams were higher than that of the control beam.

Publisher

International Journal of Innovative Science and Research Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI Utilization in Communication Buildings and Data Centers;International Journal of Innovative Science and Research Technology (IJISRT);2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3