Parkinson’s Detection Using Voice Features and Spiral Drawings

Author:

Barapatre Omprakash,Thara Rahim,Dash Swastik,Hemraj Bawane Vanshaj,Kumar Singh Varun

Abstract

Parkinson's is a dynamic neurodegenerative disease that presents multiple symptoms that advance over time. Our project proposes an innovative Parkinson's discovery machine learning model that combines both voice examination and spiral drawings assessments to capture numerous angles of the disease's symptomatology. Our approach looks for developing a comprehensive Parkinson’s detection model over different stages and symptoms of the disease. By integrating voice analysis techniques to discern subtle changes in speech patterns and spiral drawing assessments to evaluate motor function, our method aims to provide a more holistic assessment of PD symptoms. By leveraging the complementary strengths of voice analysis and spiral drawing assessments, our proposed PD detection project aims to overcome the limitations of existing approaches and provide clinicians with a more comprehensive model for early detection, diagnosis and monitoring of Parkinson's Disease. Ultimately, this initiative strives to enhance patient outcomes, improve treatment efficacy, and advance our understanding of PD progression.

Publisher

International Journal of Innovative Science and Research Technology

Reference17 articles.

1. Alshammri, R., Alharbi, G., Alharbi, E., & Almubark, I. (2023). Machine learning approaches to identify Parkinson's disease u sing voice signal features. Frontiers in Artificial Intelligence, 6, [1084001]. [DOI: 10.3389/frai.2023.1084001].

2. Alalayah, K. M., Senan, E. M., Atlam, H. F., Ahmed, I. A., & Shatnawi, H. S. A. (2023). Automatic and early detection of Parkinson's disease by analyzing acoustic signals using classification algorithms based on recursive feature elimination method. Diagnostics, 13(11), 1924. [DOI: 10.3390/diagnostics13111924].

3. Govindu, A. & Palwe, S. (2023). Early detection of Parkinson's disease using machine learning. Procedia Computer Science, 218 (249-261). [DOI: 10.1016/j.procs.2023.01.007].

4. Shreevallabhadatta, G., Suhas, M. S., Vignesh, Manoj, C., & Rudramurthy, V. C. (2022). Parkinson's Disease Detection Using Machine Learning. International Research Journal of Engineering and Technology (IRJET), 9 (6). https://www.irjet.net/archives/V9/i6/IRJETV9I6322.pdf.

5. Radha, N., Madhavan, R. M. S., & Holy, S. (2020). Parkinson's Disease Detection using Machine Learning Techniques. Revista Argentina de Clinica Psicologica, 3(6), 543. [DOI: 10.24205/03276716.2020.4055].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Cost-Effective Coconut Dehusking Machine;International Journal of Innovative Science and Research Technology (IJISRT);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3