Optimization of Process Parameters for Turning Operation on D3 Die Steel

Author:

Maruti P Asabe,S.A. Sonawane

Abstract

This research aims to determine the optimal Surface Roughness for machining D3 die steel alloy with uncoated carbide inserts. It will do this by studying the most efficient turning parameters, such as cutting speed, feed, and depth of cut. Models have been generated using a variety of statistical modeling approaches, including Genetic Algorithm with Response Surface Methodology. This research aimed to use the regression technique to develop a model that could predict surface roughness. It has also been investigated if the Taguchi Technique may be used to optimize process parameters. To decide the primary boundaries affecting Surface Unpleasantness, we used Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) tests. This paper aims to contribute valuable insights into achieving the best Surface Roughness outcomes in the machining process for D3 die steel alloy with Uncoated Carbide Inserts. The utilization of Genetic Algorithm and Response Surface Methodology showcases a robust approach for modelling intricate parameter interactions. If you know the values of the parameters, you may use the Regression Technique to forecast the surface roughness. Process parameter optimization may be made more systematic with the use of the Taguchi Technique.

Publisher

International Journal of Innovative Science and Research Technology

Reference21 articles.

1. Özel T, Karpat Y, Figueira L, Davim JP (2007) Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts, Journal of materials processing technology, 189, PP 192-198.

2. Thamizhmanii S, Hasan S (2009) Investigation of surface roughness and flank wear by CBN and PCBN tools on hard Cr-Mo steel, Proceedings of the World Congress on Engineering, PP. 5.

3. Bartarya G, Choudhury SK Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel, Procedia Cir P vol 1, (2012) PP 651-656.

4. K. Venkatesan, R Ramanujam, Vimal saxsena Nilendukar Chawdhury and Vikah Choudhray (2014). Influnce of cutting parameters on dry machining og Inconel 625 alloy coted carbide insert a statistical approch ARPN Journal of Engineering and Applied Science, Vol 9PP 1819-6608.

5. Dilbag Singh & Venkateswara Rao, P (2007), A surface roughness prediction model for hard turning process, International Journal of Advanced Manufacturing Technology, Vol. 32, PP. 1115 - 1124.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drug Dosage Control System Using Reinforcement Learning;International Journal of Innovative Science and Research Technology (IJISRT);2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3