1. Bonawitz, K., Eichner, H., Grieskamp, W., et al. (2019). "Towards Federated Learning at Scale: System Design." Proceedings of the 2nd SysML Conference.
2. Hard, A., Rao, K., Mathews, R., Ramaswamy, S. (2018). "Federated Learning for Mobile Keyboard Prediction." arXiv preprint arXiv:1811.03604.
3. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R. (2012). "Fairness through Awareness." Proceedings of the 3rd Innovations in Theoretical Computer Science Conference.
4. Zafar, M. B., Valera, I., Rodriguez, M. G., & Gummadi, K. P. (2017). "Fairness Constraints: Mechanisms for Fair Classification." Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS).
5. Agarwal, A., Dudik, M., & Wu, Z. S. (2018). "Fair Regression: Quantitative Definitions and Reduction-Based Algorithms." Proceedings of the 35th International Conference on Machine Learning (ICML).