Identification of Missing Person using CNN

Author:

Dhanalakshmi J.,Kumar M Ashok,J Shalini,Devi M Soundharya

Abstract

Our project aims to leverage Convolutional Neural Networks (CNNs) for the identification of missing persons. CNNs, a class of deep learning algorithms widely used in image recognition tasks, offer promising potential in automating and enhancing the identification process. The project aims to develop a robust system using CNN models to match unidentified individuals with missing person databases, improving identification accuracy and providing closure. The proposed approach demonstrates potential in assisting law enforcement agencies and missing persons organizations by providing a reliable and efficient means of cross-referencing images from various sources, such as surveillance footage, social media, and public records. Additionally, the flexibility of CNNs allows for the integration of other biometric markers, including fingerprints and voice recognition, to increase the accuracy and reliability of identifications. This research underscores the importance of using artificial intelligence and machine learning in social good applications, highlighting the potential for technology to play a transformative role in reuniting families and bringing closure to unresolved cases. Future work will focus on refining the model, enhancing privacy protections, and ensuring ethical use in real-world applications.

Publisher

International Journal of Innovative Science and Research Technology

Reference24 articles.

1. Artyani,I.(2019,0910).http://repository.uinjkt.ac.id/ds pace/bitstream/123456789/47930/1/ISMA%20ARTYAN I-FST.pdf. Diambil kembali dari UINJKT: http://repository.uinjkt.ac.id/dspace/bitstream/123456789/47930/1/ ISMA%20ARTYANI-FST.pdf

2. Astuti, D. L. (2019, 08 01). klasifikasi ekspresi wajah menggunakan metode principal component analysis (pca) dan convolutional neural network (cnn). Diambilkembali dari RepositoryUnsri:http://repository. unsri.ac.id/6479/3/RA MA_55101_09042621721004_ 0004027101_0023027804_01_FRONT_REF.pdf

3. Fahmi, K., Santosa , S., & Fanani , A. Z. (2015).optimasi parameter artificial neural network dengan menggunakan algoritma genetika untuk memprediksi nilai tukar rupiah. Jurnal Teknologi Informasi, 196-206.

4. Fermansah , D. (2018, 01 20). Machine Learning. Diambil kembali dari Universitas Siliwang i: http://repositori.unsil.ac.id/233/6/bab%202.pdf

5. Jiang, A., Yan, N., Wang, F., Huang, H., Zhu, H., & Wei, B. (2019). Visible Image Recognition of Power Transformer Equipment Based on Mask R-CNN. Sustainable Power and Energy Conference (iSPEC) (hal . 222-299). Beijing, China, China: IEEE.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surgical Profile of Osteosarcoma Patients in a Tertiary Referral Hospital in Surabaya, Indonesia;International Journal of Innovative Science and Research Technology (IJISRT);2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3