Sign Language Recognition System Using DL-CNN Model Using VGG16 and Image Net with Mobile Application

Author:

Sreekari S Asrita,Varaha Durga Yamini Bathi Venkata,Thanmayi Sri Somayajula Venkata,Sireesha Maram Naga

Abstract

In this project, a Deep Learning Convolutional Neural Network (DL-CNN) model trained on ImageNet and based on VGG16 is used to develop a Sign Language Recognition System incorporated into a mobile application. The technology recognizes a variety of hand gestures and movements that are inherent in sign language, allowing for real-time interpretation of sign language gestures that are recorded by the device's camera. Users can simply interact with the system by capturing motions in sign language and obtaining corresponding written or aural outputs for better communication through the app interface. Through improving accessibility and inclusivity for people with hearing loss, this project seeks to close gaps and promote understanding through technology by facilitating seamless communication in a variety of settings.

Publisher

International Journal of Innovative Science and Research Technology

Reference39 articles.

1. Li, D., Zhang, H., Liu, Y., & Du, Y. (2022). Real- time American Sign Language recognition using convolutional neural networks on embedded platforms. IEEE Access, 7, 159465-159475.

2. Puertas, E., Jara, C. A., & Pomares, J. (2020). Sign language recognition through machine learning: current state of the art and challenges. Sensors, 19(20), 4400.

3. Starner, T., & Pentland, A. (2019). Real-time American Sign Language recognition from video using hidden Markov models. Technical Report #357, MIT Media Laboratory Perceptual Computing Section.

4. Sharma, A., Sawant, S., & Singhal, S. (2020). Sign language recognition using deep learning techniques: A systematic review. International Journal of Machine Learning and Cybernetics, 11(7), 1623-1650.

5. Chen, L., Han, Y., & Gao, S. (2020). A sign language recognition method based on deep learning. Multimedia Tools and Applications, 79(9- 10), 5719-5736.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Free Meal Program on the Learning Interest of ALS Learners;International Journal of Innovative Science and Research Technology (IJISRT);2024-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3