Automated Classification of Abdominal Ultrasound lmages of the Pancreas Based on the Spectral Representation of the Border’s Contours

Author:

Kuzmin A. А.1ORCID,Sukhomlinov A. Yu.1ORCID,Chasib Hasan Al-Darraji2ORCID,Tomakova R. A.1,Dolzhenkov S. D.3,Shulga L. V.1ORCID

Affiliation:

1. Southwest State University

2. Diyala University

3. Kursk State Medical University of the Ministry of Health of the Russian Federation

Abstract

The purpose of the research is to develop a methodology for classifying complexly structured halftone images based on a multimodal approach using methods of morphological analysis, spectral analysis and neural network modeling.Methods. А method for classifying the contours of the boundaries of segments of a complexly structured image is described. Тhe method is based on the fact that in chronic diseases of the pancreas, there is a violation of the integrity of the contour of its border and its waviness increases due to retractions and bulges caused by an alterative inflammatory process. Тhe method includes the stages of normalization of ultrasound images and image segmentation with the selection of the contour of the object of interest. Тo classify the contour of a segment boundary, it is proposed to use Fourier analysis and neural network technologies. Тhe method is illustrated using the example of classifying the contour of the border of the pancreas on its transcutaneous acoustic image.Results. Еxperimental studies of the proposed methods and means for classifying medical risk were carried out on diagnostic tasks according to the following classes: "chronic pancreatitis" – "without pathology". For experimental studies, video sequences of ultrasound images of the pancreas provided by an endoscopist were used. Тhe purpose of the experimental studies was to analyze the classification quality indicators of image classifiers with class segments "Chronic pancreatitis" and "Without pathology". Тhe training sample of video images (frames of video sequences) included 200 examples, one hundred from each class. Тhe quality indicator "Sensitivity" of classification for two classes is 85,7%, the indicator "Specificity" is 87,1%.Тhe use of the contour analysis method in classifiers of ultrasound images of the pancreas opens up new opportunities for accessible and objective diagnosis of pancreatic diseases, expanding the capabilities of intelligent clinical decision support systems.

Publisher

Southwest State University

Reference23 articles.

1. Filist S. A., Tomakova R. A., Yaa Zar Do. Universal'nye setevye modeli dlya zadach klassifikacii biomedicinskih dannyh [Universal network models for classification tasks of biomedical data]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, vol. 43, no. 4, pt. 2, pp. 44–50.

2. Dabagov A. R., Malyutina I. A., Kondrashov D. S. Avtomatizirovannaya sistema dlya klassifikacii zabolevanij molochnoj zhelezy po rentgenovskim mammograficheskim snimkam [Automated system for the classification of breast diseases by X-ray mammographic images]. Prikaspijskij zhurnal: upravlenie i vysokie tekhnologii = Caspian Journal: Management and High Technologies, 2019, vol. 4, no. 48, pp. 10–24.

3. Filist S. A., Kondrashov D. S., Sukhomlinov A. Yu., Shulga L. V., Al-Darraji Ch. H., Belozerov V. A. Avtomatizirovannaya sistema klassifikacii snimkov UZI podzheludochnoj zhelezy na osnove metoda posegmentnogo spektral'nogo analiza [An automated system for classifying ultrasound images of the pancreas based on the segment-by-segment spectral analysis method]. Modelirovanie, optimizaciya i informacionnye tekhnologii = Modeling, Optimization and Information Technology, 2023, vol. 11, no. 1. https://doi.org/ 10.26102/23106018/2023.40.1.021

4. Dabagov A. R., Gorbunov V. A., Filist S. A., Malyutina I. A., Kondrashov D. S. Avtomatizirovannaya sistema klassifikacii rentgenogramm molochnoj zhelezy [Automated classification system of breast radiographs]. Medicinskaya tekhnika = Medical Equipment, 2019, vol. 6, no. 318, pp. 39–41.

5. Kurochkin A. G., Kuzmin A. A., Startsev E. A., Filist S. A. Algoritmy metaanaliza effektivnosti diagnosticheskih i terapevticheskih reshenij na osnove monitoringa surrogatnyh markerov, poluchaemyh po rezul'ta-tam analiza slozhnostrukturiruemyh izobrazhenij [Algorithms for meta-analysis of the effectiveness of diagnostic and therapeutic decisions based on monitoring of surrogate markers obtained from the analysis of complexly structured images]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Medicinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2016, no. 4 (21), pp. 41–55.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3