Automatic Particle Recognition Based on Digital lmage Processing

Author:

Oparin E. S.1ORCID,Dzus M. A.1,Davydov N. N.1ORCID,Khorkov K. S.1ORCID

Affiliation:

1. Vladimir State University named after Alexander and Nikolai Stoletovs

Abstract

The purpose of the research is to develop and compare various methods and algorithms for effective particle analysis based on their visual characteristics. Тhe purpose of this article is to develop and compare various methods and algorithms for effective particle analysis based on their visual characteristics. Тhe paper considers two fundamentally different approaches: the analysis of grayscale gradients and the machine learning method.Methods.Тhe research methodology includes the analysis of particle images obtained by precipitation from colloidal solutions after laser ablation and images of powder particles for selective laser melting. Тhe materials were obtained using a Quanta 200 3D electron microscope (FЕ/). For the analysis, threshold brightness binarization, contour recognition methods by the Kenny operator and the Hough algorithm are used to combine boundary points into connected contours. For comparison, the U-Net neural network solution was used, and a dataset generator was created to train the neural network. Hand-cut images of aluminum alloy powder particles and micro and nanoparticles of various metals are used as data for generation.Results.Тhe results of the study show that the Hough method provides recognition of the number of particles at the level of 80%, and the machine learning method achieves 95% accuracy in recognizing the shape of particles. Both methods can be used to analyze microand nanoparticles, including irregularly shaped particles.Conclusion.Тhe findings of the work confirm that neural networks are the optimal solution for automatic particle recognition in digital images. However, in order to create a dataset of sufficient volume, it is necessary to develop a generator of labeled images, which requires a detailed study of the subject area.

Publisher

Southwest State University

Reference20 articles.

1. Gulyaev P. V., Shelkovnikov E. Yu., Ermolin K. S. Obrabotka i raspoznavanie izobrazhenij repernyh otmetok dlya lokalizacii zonda v skaniruyushchem tunnel'nom mikroskope [Image processing and recognition of reference marks for probe localization in a scanning tunneling microscope]. Himicheskaya fizika i mezoskopiya = Chemical Physics and Mesoscopy, 2018, vol. 20, no. 3, pp. 437–445.

2. Myasnyankin M. B., Kuzmin A. A., Serebrovskiy V. V., Aldokhin E. A. Mnogopotochnaya arhitektura programmnogo obespecheniya obrabotki mnogokanal'nyh medicinskih signalov [Multithreaded software architecture for processing multicameral medical signals]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Medicinskoe priborostroenie = Proceedings of the Southwest State University. Series: Control, Computer Engineering, Information Science. Medical Instruments Engineering, 2022, vol. 12, no. 2, pp. 76–97.

3. Allaberganov A. A. Metod raspoznavaniya tekstovoj informacii iz cifro-voj formy (izobrazhenie), opredelenie ocherednosti naneseniya rekvizitov [The method of recognizing textual information from a digital form (image), determining the order of application of details]. Zakon i pravo = Law and Law, 2020, no. 4, pp. 187–193.

4. Gundin A. A., Gundina M. A., Cheshkin A. N. Obrabotka cifrovyh izobrazhe-nij pri defektoskopii poverhnostej promyshlennyh ob"ektov [Processing of digital images during flaw detection of surfaces of industrial objects]. Nauka i tekhnika = Science and Technology, 2016, vol. 15, no. 3, pp. 225–232.

5. Lapko A. V., Lapko V. A. Neparametricheskie algoritmy ocenivaniya sostoyanij prirodnyh ob"ektov [Nonparametric algorithms for determining the position of primary objects]. Avtometriya = Autometry, 2018, vol. 54, no. 5, pp. 33–38. https://doi.org/10.15372/AUT20180504

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3