Damping of an Oscillatory System with Incomplete Sealing of the Air Cavity by a Magnetic Fluid

Author:

Shel’deshova E. V.1ORCID,Churaev A. A.1,Ignatenko N. M.1ORCID,Neruchev Yu. A.2ORCID,Rjapolov P. A.1ORCID

Affiliation:

1. Southwest State University

2. Kursk State University

Abstract

Purpose. Investigate the damping of an oscillatory system with incomplete sealing of the air cavity with a magnetic fluid.Methods. The study was carried out on an experimental setup developed on the basis of known methods and equipment for magnetic measurements and manufactured independently. A ring neodymium magnet (NdFeB alloy) 60x24x10 mm in size was used as a magnetic field source. The magnetic field strength at the center of the magnet, measured with a TPU-01 milliteslamer, is 220 kA/m. An inductor, a GVT-427B amplifier, and a GwInstek GDS-72072 digital oscilloscope were used to display oscillograms. Samples of magnetic fluid based on Fe3O4 magnetite stabilized with oleic acid were studied. Kerosene was used as the carrier liquid.Results. The results of an experimental study of the elasticity and damping of an oscillatory system with incomplete sealing of the air cavity by a magnetic fluid bridge are presented. The level of sealing of the air cavity varies due to the process of pumping gas through capillaries of various radii. To explain the regularities obtained, a model theory is proposed in the approximation of a viscous gas flow according to the Poiseuille law, and the conclusions of the wellknown theory of sound propagation in molecular acoustics and the theory of sound ducts are also drawn. The relaxation mechanism imposes a restriction on the type of vibrational gas flow through the capillaries, which takes into account the "throughput" capacity of the capillaries. The proposed model explains the presence of a maximum in the dependence of the attenuation coefficient on the capillary radius and its decrease with an increase in the volume (height) of the gas cavity.Conclusion. The proposed relaxation theory of vibrational gas flow through capillaries predicts anomalously large damping coefficients and almost complete damping of an oscillatory system with a magnetic fluid inertial element. The use of the data obtained is advisable in the design of new shock absorbers, since a magnetic fluid damper with capillaries is capable of damping low-frequency oscillations.

Publisher

Southwest State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3