Particle Size Analysis of Nanopowders Using Neural Networks and Electron Microscopy

Author:

Tomakova R. A.1,Psarev D. V.1ORCID,Neruchev Y. A.2ORCID,Starkov V. A.1ORCID

Affiliation:

1. Southwest State University

2. Kursk State University

Abstract

The purpose of the research is to develop an application capable of automatically determining the particle size distribution of nanopowder using neural network technology in order to simplify the process of preparing documentation during its manufacture.Methods. To determine the physical properties of nanopowders during their fabrication, it is necessary to analyze the particle size distribution. A methodology for determining the size distribution of nanopowder particles based on light neural networks is proposed. Images obtained by electron microscopy are used for processing, which allows to speed up the preparation of manufactured powders for sale. The dataset collected for training contains real images of samples of different powders, augmented data and generated images. The Python language, LabVIEW graphical programming environment, YOLO convolutional neural network and various Python language libraries were used in the development.Results. The study resulted in a model trained on the collected dataset that is capable of recognizing particles in images. A software interface was created to work with the model to analyze nanopowder samples.Conclusion. The developed application allows to automatically determine the size of each powder particle on the basis of the obtained images, as well as to build graphs of their size distribution. This greatly simplifies the work of nanopowder producers and facilitates the preparation of the necessary documentation for the produced product.

Publisher

Southwest State University

Reference20 articles.

1. Michalski J., Wejrzanowski T., Pielaszek R., Konopka K. Application of image analysis for characterization of powders. Materials Science – Poland, 2005, vol. 23, no. 1, pp. 79‒ 86.

2. Gadalov V. N., Gubanov O. M., Vornacheva I. V., Petrenko V. R., Makarova I. A. Obzor kompozicionnyh metallopolimerov, uprochnennyh nano- i ul'tradispersnymi chasticami [Overview of composite metal polymers reinforced with nano- and ultradisperse particles]. Uprochnyayushchie tekhnologii i pokrytiya = Hardening Technologies and Coatings, 2021, vol. 17, no. 9 (201), pp. 424‒432.

3. Gadalov V. N., Gubanov O. M., Petrenko V. R., Filonovich A. V. Fiziko-himicheskoe i matematicheskoe opisanie diffuzionnyh processov pri svarke poroshkovyh materialov [Physico-chemical and mathematical description of diffusion processes in welding of powder materials]. Spravochnik. Inzhenernyj zhurnal = Handbook. Engineering Magazine, 2023, vol. 4, no. 313, pp. 3‒9.

4. Kroetsch D., Wang C. Particle size distribution. Soil Sampling and Methods of Analysis, 2008, vol. 2, pp. 713‒725.

5. Gadalov V. N., Sal'nikov V. G., Ageev E. V., Romanenko D. N. Metallografiya metallov, poroshkovyh materialov i pokrytij, poluchennyh elektroiskrovymi sposobami [Metallography of metals, powder materials and coatings obtained by electric spark methods]. Upravlenie personalom i intellektual'nymi resursami v Rossii [Personnel management and intellectual resources in Russia]. Moscow, Infra Publ., 2011. 468 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3